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COLLECTIVE OSCILLATIONS:
TEST OF MANY BODY THEORIES.

Test of equation of state (calculated and/or
measured at equilibrium)

Test of dynamic theories (hydrodynamics,
TDBAG, Landau theory of Fermi liquids, transport
properties)




A few examples:

- Test of equation of state along the BEC-BCS
crossover, effects of dimensionality, dipolar
forces

- Collective oscillations at finite T (first and second
sound)

- Solitons (decay and collisions)




HYDRODYNAMIC EQUATIONS AT ZERO TEMPERATURE

Closed equations for
density and superfluid
velocity field

9,
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irrotationality

- Have classical form (do not depend on Planck constant)
- Irrotationality follows from phase of order parameter
- Differ from rotational or viscous hydrodynamics.
- Hold for both Bose and Fermi superfluids
- Apply to macroscopic (low frequency) motion
- Depend on equation of state u(n)
(sensitive to quantum correlations, statistics, dimensionality, ...)




After linearization HD equations take the form

Mo’ =-V(NVu) C—> ma’du = —ng—“vz(éy) +VV._.Vu
n

ext

Surface modes ( V°qu=0)

-If V°ou=0 HD egs are insensitive to equation of state

- surface modes are driven by external potential,
not by surface tension

- For axi-symmetric trapping radial quadrupole mode
has frequency o=+ 2w, rather than w=2w,,,(ideal gas)

- Quadruple mode: useful test of achievement of HD regime




Quadrupole radial mode in Fermi gases
(Innsbruck 2006)
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Transition from hydrodynamic to non interacting regime




After linearization HD equations take the form

Mo’ =-VnV(du)

—

Mo’ =-n Z—ﬂ VZ(ou)+VV,
n

Xt

Vou

Compression modes ( V?u #0)
sensitive to equation of state

-If wpocn” then noulon=y(u,-V,,) and HD egs have
analytic solutions in the presence of harmonic trapping.

- Radial breathing mode (for o, << ®,,, ) oscillates with

frequency @w=./2y+ 20,

- At unitarity »=2/3 and HD predicts @ =+/10/30w,_,
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strongly interacting Fermi gases

Radial breathing mode

(BCS-BEC crossover)

EXxp:
Innsbruck
(2007)
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Measurement of collective frequencies
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Collective modes in 2D Fermi gas
(recent exp at Cambridge (Vogt et al PRL 2012)
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Questions:

- Is the HD regime due to collisons or to superfluidity ?

- Why is the frequency of the breathing mode constant along the crossover
(scale invariance)? log correction to 2D mean field eq. of state | ¢ oC N




Dipolar forces

d2(1 — 3cos?9)

lr1 — 733

Main features of dipolar interaction:
anisotropy and long range

First experiments available with
magnetic moment (fau , 2005)

Recent advances with electric polar
Fermi molecules (Boulder 2010)
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Several theoretical papers on collective oscillations of

polar Fermi gases:
Rzazevskii 2004, Pu, 2009, Pelster 2010...

Recent investigation of the transition between HD and
collisionless regimes: Marta Abad et al. PRA 2012

Focus on surface quadrupole oscillation for axi-sym trap
(dipole oriented along z-axis) and effect of trap deformation

Hydrodynamic value v2w, only weakly affected by

long range nature of dipole force.

Quadrupole frequency in collisionless regime calculated
using scaling transformation accounting for Fermi surface
deformation (elastic - zero sound like effect)

Shift with respect to ideal gas value 2w, | depends crucially on
trap value of trap deformation (negative shift for pancakes)




Prediction of quadrupole frequency for realistic choice of
parameters for trapped KRb polar molecules
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For very pancake configuration system cannot be
superfluid (dipole interaction is repulsive).

It will be collisionless at low temperatures

By decreasing deformation the system can become
superfluid and frequency will jump into HD value




A few examples:

- Test of equation of state along the BEC-BCS
crossover, effects of dimensionality, dipolar
forces

- Collective oscillations at finite T (first and second
sound)

- Solitons (decay and collisions)




COLLECTIVE OSCILLATIONS AT FINITE TEMPERATURE

Two fluid hydrodynamic theory predicts propagation
of first and second sound

First sound is density wave
(normal and superfluid components move in phase)

second sound Is temperature wave

8 = /=
—p,+V())=0 _
Two-fluid ot Ingredients:
- - _ - equation of state
hydrodynamic equations o S+V(sV,)=0 |. Sﬂperﬂui & Claniy
of superfluids Tt '

(Landau, 1941) m % U, +V(u(n)+V...) =0
Hold in deep collisional

regime ot <<l

9 j+VP+nVV,, =0
ot




Estimate of collisional time at high
temperature (unitary Fermi gas)

(holds also at relatively low T)
Bruun and Smith, 2007
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HD conditions easily reached at unitarity
(especially for highly elongated traps).
Important advantage of unitary Fermi gas
compared to usual BEC'’s




m-S0, +V(u() +V,,) =0

0 j+VP+nVV, =0

™~

ot

At T=0: p=p. ;] = Vs
egs. reduce to
T=0 Irrotational

superfluid HD equations

equivalent at T=0

Quite successful to describe the macroscopic
dynamic behavior of trapped atomic gases
(expansion, collective oscillations)




0

Epﬁ(i)ﬂ)
5 L Above Tc: p=py ;] =y
as+V(5\7N) =0 egs. reduce to standard

collisional HD equations

mi@)@@vm) =0| |(adiabatic sound)
ot

9 j+VP+nVV, =0
ot

Describe the collective oscillations
In the normal phase




FIRST AND SECOND SOLUTIONS

IN UNIFORM SUPERFLUIDS
H. Hu, E. Taylor, X.-J. Liu, S. Stringari, A. Griffin,
New J.Phys.12. 045040 (2010)




Simple ansatz for variational calculations (uncoupled modes)

1) v, =V,

Y in phase (first sound)

2) ] =psVs +pyVy =0/ outof phase (second sound)

first sound Is pure density mode (|6T(r,t)=0))

follows from |PnO(Vy —Vs)/ ot +SVT =0

second sound Is pure temperature mode (|6 p(F,t) =0/ )

follows from [Op/ct +§(J7) =0




sound velocities [in units of -.','l:]

Results for first and second sound modes

In uniform matter
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(theory, Taylor, Griffin

et al 2009)

(experiment, Peshkov 1946)




FIRST AND SECOND SOLUTIONS IN
HARMONICALLY TRAPPED SUPERFLUIDS
with Yan Hua, Lev Pitaevskii
(highly elongated traps)

Previous work in spherical trap
(with Hul Hu, EdTaylor and Allan Griffin)




Predictions of two-fluid HD theory applied to harmonically
trapped configurations:

- Frequency of scaling modes (quadrupole and breathing)
IS not affected by temperature
(result is iIndependent of trap deformation).
Scaling modes are first sound modes ( Vg =V )

- Higher nodal modes exhibit T-dependence




Why elongated configurations ?

Easier realization of HD condition |@,7 <<1

Easier experimental conditions

Easier theoretical calculation of normal modes
because of 1D nature

In the presence of tight radial trapping
3D equations can be reduced to 1D form (TF 1D):
New equation of state (|R.(o,) # P(0)))

New role of viscosity and thermal conductivity




From 3D to 1D (Thomas-Fermi)
(Bertaina et al. PRL 2010)

At T=0 reduction to 1D form is ensured by equation for
superfluid velocity field and condition |ou = ou(z,t)
applied to low frequency solutions of order w,

At finite temperature reduction to 1D form requires not only
Usual HD condition |7 <<1 , but also additional
condition |@ << @’r

Imposed Dby viscosity and thermal conductivity in equations
for the current and entropy. The new condition yields

v, =V,(z,t) and oT =0oT(z,t)




1D hydrodynamic equations can be derived
using variational procedure with respect to
velocity fields.

For first sound we use the ansatz |Vin =Vis =V

At unitarity HD equation takes the form

mao’v =—(7/5p,)0,(Po,vV ) +ma’v

where p; = I odxdy
and PlocjdxdyP ocp17/5f(|'/p12/5)

are 1D density and pressure,




Solutions of 1D HD equation at unitarity:

At T=0 ( P, o« p/’° ) solutions are polynomials:

k k— . : .
V ocz+az"*+...  with dispersion:

0’ = %(k +1)(k +5)?

At high T ( P, =Tp,/m) one instead finds:
1

W’ ==
5
k=0 (center of mass, ® = @, ) and

k=1 (axial breathing, & = 12/5m, ) frequencies
are temperature independent

(7k +5)0?




Higher k-modes have richer nodal structure and
exhibit T-dependence.

To calculate T-dependence we use a polynomial
variational ansatz for the velocity field. Result for

the frequency of the k=2 mode:
129t, - 25

with

‘(k =2) =
@ ) 5(9t, —5) “ tz(r):MoM4/M22

P
M, = Jax(Bue —x) 2" p(x)

—Q0

and moments

evaluated from measured MIT equation of state
at unitarity ( M. Zwierlein and M. Ku, Mit)




Experimental excitation of axial collective

modes In the unitary Fermi gas at T <T_
(Innsbruck)
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Mode profiles: experiment vs. theoretical prediction
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- Theoretical curve calculated using 1D HD plus MIT Eg. of state
and phonon contribution at very low T
-  Experimental data: Innsbruck
- First exp verification of transition between superfluid and collisional HD




A few examples:

- Test of equation of state along the BEC-BCS
crossover, effects of dimensionality, dipolar
forces

- Collective oscillations at finite T (first and second
sound)

- Solitons (decay and collisions)




Soliton oscillation and collisions
In an interacting Fermi gas

Soliton solution of Gross-Pitaevskii eq. P (Tsuzuki 1971)

vV 7wt | v )
WY(z—-vt)=+/n| i—+,/1—— tanh 1— 2 | e
S {C C J2¢& CZJ

2

3/2
- Energy 8=gh0”(1—\/2j decreases by increasing velocity

C

- Maximum velocity of soliton given by sound velocity

- In harmonic trap soliton oscillates with frequency |®@yo / J2

- Collisions between solitons are elastic
(integrability of 1D GP equation)




What happens in interacting Fermi gases ?

Limiting velocity fixed by pair breaking mechanism
(smaller than sound velocity in BCS side of resonance)

In harmonic trap frequency of oscillation in interacting
Fermi gase is smaller than in BEC’s

Collisions are inelastic (after the collision soliton can
reach the limiting velocity and disappear !)

Results obtained by solving numerically
Time dependent Bogoliubov de Gennes equations
Scott et al. (PRL 2011, NJP 2012)




Landau’s critical velocity along the BEC-BCS crossover

theory \ experiment
\Magnetic Field {Gauss)
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(Combescot et al, 2006) (Miller et al, 2007)

Landau’s critical velocity
IS
highest near unitarity !!




Decay of solitons

A soliton is cretated at distance x from

the center of harmonic trap.

The harmonic potential accelerates the soliton
If X Is too large the soliton decays because its
velocity reaches pair breaking critical velocity

‘ ‘ ' ‘ |

20 Loum




Critical velocity of solitons
calculated solving BdG equations

Sound velocity

Pair breaking
critical velocity

1/ka



Soliton oscillation in a trap across the crossover
(in BCS frequency is smaller than in BEC)




Soliton collisions In a trap across the crossover
1/kca = -0.5 (BCS) 1/kra =0 (Unitarity) 1/kca = 0.5 (BEC)

788\ / .

Soliton can decay after collision because
Its velocity is larger than before collision
(energy of soliton decreases with increasing velocity)




Main conclusions:

The adventure of collective oscillations in quantum
gases started immediately after the first experimental
realization of Bose-Einstein condensation in 1995.

It found a new exciting season after the realization of
guantum degenarate Fermi gases

It is still an active direction of research
as a dynamic test of the new phases available
with quantum gases.




Spin-orbit Hamiltonian with equal Rashba and
Dresselhaus couplings. Recent exp
Implementation with Fermi gases

f-r ,T_,
Recent exp implementation
In Fermi gases
§ - Wang et al. arXiv:1204.1887
. Y62 - Cheuk et al. arXive:1205.3483
- 6/'2ﬂ:
0} = 1)
W
T
]
>
<
2
L

1 1
H ZE[(px _kOO-z)Z + pJZ_]+§QGx

+150Z +V
2

ext +V2—body Quasimomentum qg/k;




Spin-orbit Hamiltonian violates Galilean invariance.
Equation of continuity affected by spin-orbit term

New commutation relation for dipole operator
[H , X] — _i(Px - kOGZ)

yields new sum rule estimate for dipole frequency:

a)z = COZ 1
> 1+kZx(o,)

Center of mass frequency quenched with respect to oscillator

frequency @, due to coupling with spin degree of freedom. Key
role played by Spin polarizability y(o,)
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Dipole frequency of spin-orbit coupled BEC gas quenched with
respect to oscillator value @, (Yun Li et al arXiv:1205.6398)




