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- Test of equation of state (calculated and/or 

measured  at equilibrium) 

 

- Test of dynamic theories (hydrodynamics, 

TDBdG, Landau theory of Fermi liquids, transport 

properties) 

COLLECTIVE OSCILLATIONS: 

TEST OF MANY BODY THEORIES. 



A few examples: 

 

- Test of equation of state along the BEC-BCS 

crossover, effects of dimensionality,  dipolar 

forces 

 

- Collective oscillations at finite T (first and second 

sound) 

 

- Solitons (decay and collisions) 
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Closed equations for 

density and superfluid 

velocity field  

HYDRODYNAMIC  EQUATIONS AT ZERO TEMPERATURE 

irrotationality 

- Have classical form (do not depend on Planck constant)  

- Irrotationality follows from phase of order parameter 

- Differ from rotational or viscous hydrodynamics. 

- Hold for both Bose and Fermi superfluids 

- Apply to macroscopic (low frequency) motion 

- Depend on equation of state            

  (sensitive to quantum correlations, statistics, dimensionality, ...)  
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After linearization  HD equations  take the form 

 - If                  HD eqs are insensitive  to equation of state 

 

- surface modes are driven by external potential,  

  not by surface tension 

 

- For axi-symmetric trapping  radial quadrupole mode     

   has frequency                    rather than                 (ideal gas) 

 

- Quadruple mode: useful test of achievement of HD regime 
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Quadrupole radial mode in Fermi gases  
(Innsbruck 2006) 

unitarity 

HD 

Collisionless 

Transition from hydrodynamic to non interacting regime  
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After linearization  HD equations  take the form 

 - If                then                                   and HD eqs have  

 analytic solutions in the presence of harmonic trapping.  

 

- Radial breathing mode (for                   ) oscillates with 

   frequency    

 

- At unitarity                and HD predicts   
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sensitive to equation of state  
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Radial breathing mode  

in strongly interacting Fermi gases 

(BCS-BEC crossover) 

MC equation of state  (Astrakharchick et al.,  2005) 

 mean field 
(Hu et al., 2004) 
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Measurement of collective frequencies  

provides accurate test of  universality  

and of equation of state along the crossover!! 

Universality 

at unitatity 

BCS BEC 

Exp: 

Innsbruck 

(2007)  



Collective modes in 2D Fermi gas 

(recent exp at Cambridge (Vogt et al PRL 2012) 

quadrupole breathing 
HD 

Collisionless 

BCS BEC 

Questions: 

- Is the HD regime due to collisons or to superfluidity ? 

- Why is  the frequency of the breathing mode constant along the crossover 

(scale invariance)? log correction to 2D mean field eq. of state   n



Dipolar forces 

Main features of dipolar interaction:  

anisotropy and long range 

 

First experiments available with  

magnetic  moment (fau , 2005)  

 

Recent advances with electric polar  

Fermi molecules (Boulder 2010) 



Recent investigation of the transition between HD and 

collisionless regimes: Marta Abad  et al. PRA 2012 

 

Focus on surface quadrupole oscillation for axi-sym trap 

(dipole oriented along z-axis) and effect of trap deformation  

Several theoretical papers on collective oscillations of 

polar Fermi gases:  
Rzazevskii 2004, Pu, 2009, Pelster 2010… 

- Hydrodynamic value            only weakly affected by  

    long range nature of dipole force. 

- Quadrupole frequency in collisionless regime calculated  

    using scaling transformation accounting for Fermi surface 

    deformation (elastic - zero sound  like effect )  

- Shift with respect to ideal gas value          depends crucially on  

    trap value of trap deformation (negative shift  for pancakes) 
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Prediction of quadrupole frequency for realistic choice of 

parameters for trapped KRb polar molecules 

- For very pancake configuration system cannot be 

superfluid (dipole interaction is repulsive).  

    It will be  collisionless at low temperatures  

- By decreasing deformation the system can become 

superfluid and frequency will jump into HD value  
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A few examples: 

 

- Test of equation of state along the BEC-BCS 

crossover, effects of dimensionality,  dipolar 

forces 

 

- Collective oscillations at finite T (first and second 

sound) 

 

- Solitons (decay and collisions) 

 



COLLECTIVE OSCILLATIONS AT FINITE TEMPERATURE 

Two fluid hydrodynamic theory predicts propagation 

of first and second sound   

 

First sound is density wave  

(normal and superfluid components move in phase) 

 

second sound is  temperature wave   
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Two-fluid  

hydrodynamic equations 

of superfluids 

(Landau, 1941) 

 

Hold in deep collisional 

regime 1

Ingredients: 

- equation of state 

- superfluid density 
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Estimate of collisional time at high 

temperature (unitary Fermi gas) 

(holds also at relatively low T) 
Bruun and Smith, 2007 
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 HD conditions easily reached  at unitarity  

 (especially for highly elongated traps).  

 Important advantage of unitary Fermi gas  

 compared to usual BEC’s 
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 At T=0: 

eqs. reduce to  

T=0 irrotational 

superfluid HD equations 

SS vj


  ;

equivalent at T=0 

Quite successful to describe the macroscopic 

dynamic behavior of trapped atomic gases 

(expansion, collective oscillations) 
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Above Tc: 

eqs. reduce to standard 

collisional  HD equations 

(adiabatic sound) 

NN vj
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  ;

Describe the collective oscillations  

in the normal phase  



FIRST AND SECOND SOLUTIONS  

IN UNIFORM SUPERFLUIDS 
H. Hu, E. Taylor, X.-J. Liu, S. Stringari, A. Griffin, 

New J.Phys.12. 045040 (2010) 



Simple ansatz for variational calculations (uncoupled modes) 
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)1 in phase (first sound) 

0)2  NNSS vvj


 out of phase (second sound) 

first sound is pure density mode (                      ) 

 

follows from 

second  sound is pure temperature mode (                       ) 

 

follows from 
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Results for first and second sound modes 

in uniform matter  
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Unitary Fermi gas 

(theory, Taylor, Griffin   

et al 2009) 

Liquid He  

(experiment, Peshkov 1946) 

superfluid 

density 



FIRST AND SECOND SOLUTIONS  IN  

 HARMONICALLY TRAPPED  SUPERFLUIDS 

with Yan Hua, Lev Pitaevskii  

(highly elongated traps)  

Previous work in spherical trap  

(with Hui Hu, EdTaylor and Allan Griffin) 



Predictions of two-fluid HD theory applied to harmonically 

trapped configurations: 

 

- Frequency of scaling modes (quadrupole and breathing) 

is not affected by temperature  

     (result is independent of trap deformation).  

     Scaling modes are first sound modes (            ) 

   

- Higher nodal modes exhibit T-dependence 
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- Easier realization of HD condition 

 

- Easier experimental conditions 

 

- Easier theoretical calculation of normal modes 

because of 1D nature  

 

- In the presence of tight radial trapping  

    3D equations can be reduced to 1D form (TF 1D): 

    New equation of state (                       ) 

 

-  New role of viscosity and thermal conductivity 
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Why elongated configurations ? 



From 3D to 1D (Thomas-Fermi) 
(Bertaina et al. PRL 2010) 

At T=0 reduction to 1D form is ensured by equation for 

superfluid velocity field and condition 

applied to low frequency solutions of order  

 

At finite temperature reduction to 1D form requires not only 

Usual HD condition                 , but also additional 

condition    

 

imposed  by viscosity and thermal conductivity in equations 

for the current and entropy. The new condition yields  
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1D hydrodynamic equations can be derived 

using variational procedure with respect to 

velocity fields. 

 

For first sound we use the ansatz 

 

At unitarity HD equation  takes the form 

 

 

 

where 

                         

and 

          

are  1D density and pressure,  
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Solutions of 1D HD equation at unitarity: 

                             .   

 

At T=0 (                ) solutions are polynomials:  

                                    with dispersion: 

 

 

 

At high T (                   )  one instead finds: 

 

 

 

k=0 (center of mass,             ) and  

k=1 (axial breathing,                      )  frequencies  

are temperature independent               
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Higher k-modes have richer nodal structure and 

exhibit T-dependence.  

 

To calculate T-dependence we use a polynomial 

variational ansatz for the velocity field. Result for 

the frequency of the k=2 mode: 

                                                      with     

 

                    and 

 

 and moments 

 

 

 evaluated from measured MIT equation of state  

at unitarity ( M. Zwierlein and M. Ku, Mit)  
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Experimental excitation of axial collective  

  modes in the unitary Fermi gas at   
(Innsbruck) 

CTT 



K2 mode 





-   Theoretical curve calculated using 1D HD plus MIT Eq. of state   

     and phonon contribution at very low T  

- Experimental data: Innsbruck 

- First exp verification of transition between superfluid and collisional HD 



A few examples: 

 

- Test of equation of state along the BEC-BCS 

crossover, effects of dimensionality,  dipolar 

forces 

 

- Collective oscillations at finite T (first and second 

sound) 

 

- Solitons (decay and collisions) 

 



Soliton oscillation and collisions 

in an interacting Fermi gas 

Soliton solution of Gross-Pitaevskii eq. P (Tsuzuki 1971) 

 

 

 

 

- Energy                          decreases by increasing velocity 

 

- Maximum velocity of soliton given by sound velocity 

 

- In harmonic trap soliton oscillates with frequency 

 

- Collisions between solitons are elastic  

    (integrability of 1D GP equation)  
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What happens in interacting Fermi gases ?  

 

- Limiting velocity  fixed by pair breaking mechanism 

     (smaller than sound velocity in BCS side of resonance) 

 

- In harmonic trap frequency of oscillation in interacting 

Fermi gase  is smaller than in BEC’s 

 

- Collisions are inelastic (after the collision soliton can 

reach the limiting velocity and disappear !) 

Results obtained by solving numerically  

Time dependent Bogoliubov de Gennes equations 

Scott et al. (PRL 2011, NJP 2012) 



Landau’s critical velocity 

is 

highest near unitarity !! 

resonance 

Sound velocity 

Landau’s critical velocity along the BEC-BCS crossover 

(Combescot et al, 2006) 

theory experiment 

B  
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- A soliton is cretated at distance x from  

    the center of  harmonic trap.  

- The harmonic potential accelerates the soliton 

- If x is too large the soliton decays because its 

    velocity  reaches pair breaking critical velocity  

Decay of solitons 



 

 

 

 

 

 

 

 

Pair breaking  

critical velocity 

Critical velocity of solitons  

calculated solving BdG equations 

 

 

 

Sound velocity 



Soliton oscillation in a trap across the crossover 

(in BCS frequency is smaller than in BEC) 
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Position Position Position 

1/kFa = -0.5 (BCS) 1/kFa = 0 (Unitarity) 1/kFa = 0.5 (BEC) 



Soliton collisions in a trap across the crossover 
ti
m

e
 

1/kFa = -0.5 (BCS) 1/kFa = 0 (Unitarity) 1/kFa = 0.5 (BEC) 

Soliton can decay after collision  because  

its velocity is larger than before collision  

(energy of soliton decreases with increasing velocity) 



Main conclusions: 

 

The adventure of collective oscillations in quantum 

gases started immediately after the first experimental 

realization of Bose-Einstein condensation  in 1995. 

 

It found a new  exciting season after the realization of 

quantum degenarate Fermi gases  

 

It is still an  active direction of research  

as a dynamic test of the new phases available  

with quantum gases. 



Spin-orbit Hamiltonian with equal Rashba and 

Dresselhaus couplings. Recent exp 

implementation with Fermi gases 
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Recent exp implementation  

in Fermi gases 

- Wang et al. arXiv:1204.1887 

- Cheuk et al. arXive:1205.3483 



Spin-orbit Hamiltonian violates Galilean invariance. 

Equation of continuity affected by spin-orbit term 

 

New commutation relation for dipole operator 

 

 

yields new sum rule estimate for dipole frequency: 
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Center of mass frequency quenched  with respect to oscillator  

frequency        due to coupling with spin degree of freedom. Key 

role played by Spin polarizability )( z
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Exp: Chen et al 

2012 

Nonlinearity 

   effect 

Dipole frequency of spin-orbit coupled BEC gas quenched with 

respect to oscillator value        (Yun Li et al arXiv:1205.6398)  x

Spin polarizability 

Exp:  

Shuai Chen et al. 

arXiv:1202.6018 


