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A gas of fermionic atoms
• Either two hyperfine states of the same atom
• or two different atomic species (e.g. K & Li)

Questions to address in these systems
• The role of interactions in determining many-body properties

• Dimensionality? 

• Which phases can be obtained? (superfluid, phase separation, FFLO, 
ferromagnetic....)

An equal mixture of the two 
components changes smoothly from 
a BCS to a BEC type superfluid

Fermionic mixtures



Outline

• Motivation: Quasi-2D vs 2D

• Highly polarized quasi-2D Fermi gas:

• Polaron-molecule transition in quasi-2D

• 2D-3D crossover

• Upper branch



Part I: The quasi-2D Fermi gas



Atomic scattering

Consider two species with contact interactions:

s-wave scattering amplitude:

f(q) =
2π

ln [1/(qa2D)] + iπ/2

a2D=2D scattering length
3D: Bound state when 
2D scattering always allows a bound state

=3D scattering length

Strong interactions in the many-body system:      
(3D) or                    (2D)

• Single interaction parameter in 2D:                 or  �b/�F



Quasi-2D
• Atoms confined to the plane by approximately 

harmonic confinement

V (z) =
1

2
mω2

zz
2

lz

If                                the gas is quantum 
degenerate and collisions can be considered 
quasi-2D
(transverse degrees of motion are frozen out)

However, the binding energy of 
dimer is another energy scale



Quasi-2D

Scattering of two atoms in the H.O. ground state:

(Theory: Petrov & Shlyapnikov PRA 2001, Bloch, Dalibard, Zwerger RMP 2008)
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Comparing theory and experiment

Often used to match theory and experiment:
f(q) =

2π

ln [1/(qa2D)] + iπ/2

Only valid when

Instead use the quasi-2D scattering amplitude.
Low energy expansion:

(Theory: Petrov & Shlyapnikov PRA 2001, Bloch, Dalibard, Zwerger RMP 2008)



Aside: 3D narrow Feshbach resonance

Narrow resonance characterized 
by narrow magnetic field width 
and by a large effective range 

0 1

broad

narrow

broad

narrow

In quasi-2D the role of “effective range” 
is played by the confinement length

•This analogy can be formalized by use of a 
two-channel model
•Captures few-body physics but misses 
many-body contributions



2D vs Quasi-2D

Do theories of the 2D Fermi gas quantitatively describe 
current quasi-2D experiments?

Lower branch: 

Upper branch: 
• Quasi-2D nature important

• May be described by 2D theory provided 
correct definition of         is used

Results from our studies of the highly polarized Fermi gas



Part II: Highly polarized Fermi gas



Polarized Fermi gases

• Introduce a density imbalance between the two 
components.  What changes?

Frustration:
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BEC-BCS crossover in “magnetized” Feshbach-resonantly paired superfluids

Daniel E. Sheehy and Leo Radzihovsky
Department of Physics, University of Colorado, Boulder, CO, 80309

(Dated: August 18, 2005)

We map out the detuning-magnetization phase diagram for a “magnetized” (unequal number of
atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach
resonance (FR). The phase diagram is dominated by coexistence of a magnetized normal gas and
a singlet paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover
with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-
momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase
separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid,
that is a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-
species Fermi-sea, is a stable ground state.

Recent experimental realizations of paired superfluid-
ity in trapped fermionic atoms interacting via a Fesh-
bach resonance (FR) [1, 2] have opened a new chap-
ter of many-body atomic physics. Almost exclusively,
the focus has been on equal mixtures of two hyperfine
states exhibiting pseudo-spin singlet superfluidity that
can be tuned from the momentum-pairing BCS regime
of strongly overlapping Cooper pairs (for large positive
detuning) to the coordinate-space pairing Bose-Einstein
condensate (BEC) regime of dilute molecules (for nega-
tive detuning) [3].

In contrast, s-wave pairing for unequal numbers of
atoms in the two pairing hyperfine states has received
virtually no experimental attention and only some re-
cent theoretical activity[4, 5, 6, 7, 8, 9]. Associating the
two pairing hyperfine states with up (↑) and down (↓)
pseudo-spin σ, the density difference δn = n↑ − n↓ is
isomorphic to “magnetization” m ≡ δn and the corre-
sponding chemical potential difference δµ = µ↑ −µ↓ to a
purely Zeeman field h ≡ δµ/2.

This subject dates back to the work of Fulde and Fer-
rell (FF) [10] and Larkin and Ovchinnikov (LO) [11]
who proposed that, in the presence of a Zeeman field,
an s-wave BCS superconductor is unstable to magne-
tized pairing at a finite momentum Q ≈ kF↑ − kF↓ with
kFσ the Fermi wavevector of fermion σ. This FFLO
state, which remains elusive in condensed matter systems
where it is obscured by orbital and disorder effects, spon-
taneously breaks rotational and translational symmetry
and emerges as a compromise between competing singlet
pairing and Pauli paramagnetism.

Thus atomic fermion gases (where the above delete-
rious effects are absent), tuned near an s-wave FR, are
promising ideal systems for a realization of the FFLO
and related finite-magnetization paired states, that can
be studied throughout the full BCS-BEC crossover.

In this Letter, we map out the detuning-magnetization
phase diagram (Fig.1) of such paired superfluids. We
find that for positive detuning δ and arbitrarily small m,
the system phase-separates into a magnetized normal gas
(N) and a singlet-paired BCS superfluid that exhibits a

FIG. 1: (Color Online) Detuning, δ – population difference,
m/n = (n↑ − n↓)/(n↑ + n↓) phase diagram (for coupling γ =
0.1) in (a) displaying “normal” (N), magnetized superfluid
(SFM ), FFLO (thick red line) and SF-N coexistence states,
(b) showing the FFLO wavevector Q(δ) along the FFLO-N
phase boundary, and (c) zoom-in on the FFLO state, stable
only for δ > δ∗ " 2.2εF. To the right of the dashed lines in
(a) and (c), the SF-N coexistence undergoes a transition to
SF-FFLO coexistence.

BCS-BEC crossover with reduced δ. The FFLO state in-
tervenes in a sliver on the boundary between this coexis-
tence region and the N state. For large negative detuning
a uniform magnetized superfluid (SFM ), that is a coher-
ent mixture of singlet Bose-condensed molecules and fully
magnetized single-species Fermi-sea is a stable ground
state. Our predictions of these states and transitions
between them are testable via thermodynamics (qualita-
tively modified by gapless atomic excitations inside the
SFM and FFLO states), sound propagation (with zeroth
sound velocity vanishing at the SFM -N transition), and

Possibility of exotic 
pairing phenomena, 

such as FFLO

Theoretical approach:
Sheehy & Radzihovsky, PRL 2006



Single impurity in a Fermi gas

• Gives insight into the phase diagram of a 
polarized Fermi gas

• Tests our understanding of strongly 
correlated physics

Experiments:
Köhl (Cambridge): 40K in 2D
Zwierlein (MIT): 6Li, 40K in 3D
Hulet (Rice): 6Li (3D) 
Grimm (Innsbruck): 40K-6Li mixture in 3D
Salomon (ENS): 6Li (3D)
Thomas (North Carolina State): 6Li (quasi-2D)
.............



The standard picture of a Fermi polaron:
a) For weak interactions, the impurity moves freely through the Fermi sea
b) As the interactions are increased, the impurity attracts surrounding 
majority atoms
c) For strong attractive interaction the impurity will bind one majority 
atom to form a molecule

The Fermi polaron
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Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms

André Schirotzek, Cheng-Hsun Wu, Ariel Sommer, and Martin W. Zwierlein
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We have observed Fermi polarons, dressed spin down impurities in a spin up Fermi sea of ultracold
atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges
from a broad incoherent background. We determine the polaron energy and the quasiparticle residue
for various interaction strengths around a Feshbach resonance. At a critical interaction, we observe
the transition from polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a
phase transition into a Bose liquid coexisting with a Fermi sea.

PACS numbers: 05.30.Fk,03.75.Ss, 32.30.Bv, 67.60.Fp

The fate of a single impurity interacting with its en-
vironment determines the low-temperature behavior of
many condensed matter systems. A well-known exam-
ple is given by an electron moving in a crystal lattice,
displacing nearby ions and thus creating a localized po-
larization. The electron, together with its surrounding
cloud of lattice distortions, phonons, forms the lattice
polaron [1]. It is a quasiparticle with an energy and
mass that differ from that of the bare electron. Polarons
are central to the understanding of colossal magnetoresis-
tance materials [2], and they affect the spectral function
of cuprates, the parent material of High-TC superconduc-
tors [3]. Another famous impurity problem is the Kondo
effect, where immobile spin impurities give rise to an en-
hanced resistance in metals below the Kondo tempera-
ture [4]. In contrast to the electron moving in a phonon
bath, a bosonic environment, in the latter case the im-
purity interacts with a fermionic environment, the Fermi
sea of electrons.

Here we study a small concentration of spin down
impurities immersed in a spin up Fermi sea of ultra-
cold atoms. This system represents the limiting case
of spin-imbalanced Fermi gases and has been recog-
nized to hold the key to the quantitative understand-
ing of the phase diagram of imbalanced Fermi mix-
tures [1, 2, 3, 6, 6, 7, 7, 8, 12, 13, 14, 17]. Unlike in liquid
3He, the s-wave interaction potential between the impuri-
ties and the spin up atoms in this novel spin-imbalanced
Fermi liquid is attractive. The vicinity of a Feshbach
resonance allows to tune the interaction strength at will,
characterized by the ratio of the interparticle distance
∼ 1/kF to the scattering length a, where kF is the spin up
Fermi wavevector [5]. Fig. 1 depicts the scenario for a sin-
gle impurity: For weak attraction (1/kF a " −1) the im-
purity propagates freely in the spin up medium of density
n↑ = k3

F /6π2 (Fig. 1a). It merely experiences the familiar
attractive mean field energy shift E↓ = 4π!2an↑/m < 0.
However, as the attractive interaction grows, the im-
purity can undergo momentum changing collisions with
environment atoms, and thus starts to attract its sur-
roundings. The impurity “dressed” with the localized
cloud of scattered fermions constitutes the Fermi polaron

FIG. 1: From polarons to molecules. a) For weak attraction,
an impurity (blue) experiences the mean field of the medium
(red). b) For stronger attraction, the impurity surrounds it-
self with a localized cloud of environment atoms, forming a
polaron. c) For strong attraction, molecules of size a form
despite Pauli blocking of momenta !k < !kF ! !/a by the
environment.

(Fig. 1b). Dressing becomes important once the mean
free path ∼ 1/n↑a2 of the bare impurity in the medium
becomes comparable to the distance ∼ 1/kF between en-
vironment particles or when (kF a)2 ∼ 1. Collisions then
reduce the bare impurity’s probability of free propaga-
tion, the quasiparticle residue Z, from unity. The dressed
impurity can instead move freely through the environ-
ment, with an energy E↓ shifted away from the simple
mean field result. This polaronic state is stable until, for
strong attraction (1/kF a ∼ 1), equivalent to a deep ef-
fective potential well, the spin down impurity will bind
exactly one spin up atom, thus forming a tightly bound
molecule (Fig. 1c). This molecule is itself a dressed im-
purity, albeit a bosonic one [13].

To prepare and observe Fermi polarons, we start with a
spin-polarized cloud of 6Li atoms in the lowest hyperfine
state |1〉 (spin up), confined in a cylindrically symmetric
optical trap (125 µm waist, 145 Hz/22.3 Hz radial/axial
trapping frequency) at a magnetic field of 690 G [5]. A
two-photon Landau-Zener sweep transfers a small frac-
tion into state |3〉 (spin down), and further cooling re-
sults in a cloud containing 2% |3〉 impurities immersed
in a degenerate Fermi gas of 5 million |1〉 atoms at a tem-
perature T = 0.14(3)TF , where TF is the Fermi temper-
ature. A 100 G wide Feshbach resonance for scattering
between these states is centered at 690 G. For various
fields around the resonance, we perform rf spectroscopy

A particle immersed in a quantum many-body system, such as an 
electron in the crystal lattice of a solid, will move in a cloud of 
excitations of its environment. The many-body system modifies the 
physical properties of the particle (mass, charge, etc.).



Variational description of an 
impurity in a Fermi gas

• Has been shown to give good estimates in 3D

• Approximate cancellation of contributions 
from terms with 2 or more particle hole pairs

Chevy, Lobo, Recati, Combescot...
Svistunov & Prokof’ev

MIT, ENS, Innsbruck, Cambridge

Polaron:

Molecule:

Dressing of impurity by one particle-hole excitation

• Attractive polaron

• Repulsive polaron

Two solutions:

Combescot, Giraud PRL 2008



Polaron-molecule transition

• 2D prediction:                   �b/�F ≈ 10 Parish PRA(R) 2011

This transition has recently been 
observed in the group of M. Köhl
• Parameters of experiment:

�F = h× 10kHz

ωz = 2π × 80kHz

increase attraction

Is the 2D 
approximation 
valid for these 
parameters?

Koschorreck et al, arXiv:1203.1009



Polaron in quasi-2D

• The presence of the Fermi sea couples center of mass and relative 
motion

• Harmonic oscillator quantum number of the impurity can be changed by interactions 
with the Fermi sea

• Variational wavefunction for the polaron:
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FIG. 6: (color online). The integral equation (8) satisfied by the vertex H. Circles indicate that the interaction inside the
vertex is initially between the two marked particles. The loop on the last two diagrams yields a summation over q�.

H. Taking into account only the homogenous terms (any pole in the non-homogenous term lies above the dressed

moleculy energy) finally results in the integral equation (8) in the main text.

Additionally, we have verified that a variational approach with the trial wave functions for the polaron

|P � =
�

n

φnc
†
↓0n |FS, N↑ �+

�

nn�m
kq

φnn�m
kq c

†
↓q−knc

†
↑n�kc↑mq |FS, N↑ � (14)

and the molecule

|M � =
�

nn�k

φnn�

k c
†
↑knc

†
↓−kn� |FS, N↑ − 1 �+ 1

2

�

nn�mm�

kk�q

φnn�mm�

kk�q c
†
↓q−k−k�nc

†
↑kn�c

†
↑k�mc↑qm� |FS, N↑ − 1 � (15)

yields the equations (6) for the polaron and (8) for the molecule quoted in the main text. Here c
†
σkn denotes the

creation operator for a particle of spin σ with in-plane momentum k in the n-th transverse harmonic oscillator mode.

|FS, N↑ � is the non-interacting ground-state of N↑ spin-↑ fermions.
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ni
+

q n
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nfni nfni

����
nf T
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The low energy scattering of two particles in a two-

dimensional geometry is described through the s-wave
scattering amplitude [17]

f(q) =
2π

ln [1/(qa2D)] + iπ/2
, (1)

with q the relative momentum. In the following we work

in units where � = 1. The scattering at low energies is

controlled by the parameter a2D which has the dimension

of length. a2D may be extracted in experiments from

the low energy behavior of the scattering cross section

σ = |f(q)|2/4q.
Petrov et al. [11] demonstrated how the scattering

amplitude in a quasi-2D geometry is related to Eq. (1):

In three dimensions, the properties of an atomic gas in-

teracting close to a broad Feshbach resonance is charac-

terized by a single few-body parameter, the scattering

length as. The energy dependence of the quasi-2D scat-

tering amplitude f00 at energy � = k2/m < ωz was found

to be

f00(�) =
2
√
2π

lz/as − F(−�/ωz)
, (2)

where incoming and outgoing particles are assumed to be

in the ground state of the relative motion in the harmonic

oscillator potential. We use the definition of F [18]

F(x) =

� ∞

0

du√
4πu3

�
1− e−xu

�
[1− exp(−2u)]/2u

�
. (3)

As opposed to scattering in 3D, the two-dimensional scat-

tering always admits a bound state, whose binding en-

ergy �B > 0 satisfies lz/as = F(�B/ωz). At low energies,

|�| � ωz, the function F takes the form

F(x) ≈ 1√
2π

ln (Bx/π) +
ln 2√
2π

x+O(x2
) (4)

with B ≈ 0.905 [11, 18]. Keeping the first term on the

r.h.s., the asymptotic low energy expression (1) is recov-

ered with

a2D = lz
�

π/B exp(−
�
π/2lz/as). (5)

As demonstrated below, going beyond the leading order

in the low energy expansion of F(x) is important for

the understanding of current experiments on Fermi gases

confined to quasi-2D.

We now turn the problem of a single ↓ impurity in a

Fermi sea of ↑ particles. A central tool in the study of

many-body problems is the T -matrix, describing the for-

ward scattering between the impurity and a spin-↑ atom

at total 2D momentum q and energy �. In vacuum, the

T -matrix is simply related to the scattering amplitude

T0(q, �) = f00(�− �q/2)/m, (6)

G G0 G0 G0Σ

ni
+

q n

+...=
nfni nfni

����
nf T

FIG. 2: The first two terms of the geometric series for the
propagator of the impurity dressed by a particle-hole excita-
tion.

with the free particle dispersion �q = q2/2m. The pres-

ence of the Fermi sea couples the center of mass and

relative harmonic oscillator modes and the T -matrix de-

pends on harmonic oscillator quantum numbers n1, n2

and n�
1, n

�
2 of incoming and outgoing particles. The for-

malism for the T -matrix in the presence of the Fermi sea

was recently developed in Ref. [19] where it was demon-

strated that the full T matrix, Tn1n2

n�
1n

�
2
, can be written in

terms of a T -matrix depending only on center of mass

quantum numbers N, N �
. For details see Ref. [19] and

the Supplementary material.

In the limit of weak attractive interactions, the impu-

rity exists as a quasi-particle dressed by a cloud of major-

ity atoms. This impurity problem has been widely stud-

ied theoretically in both three [12, 20] and two dimen-

sions [14–16, 21, 22] using variational and diagrammatic

methods. In 3D, the accuracy of this analytic approach

has been validated by both exact quantum Monte-Carlo

calculations [23], and also by precise experiments with

quantum simulators employing optically trapped ultra-

cold quantum gases [24]. Here we provide an extension

of the diagrammatic approach to the experimentally rel-

evant quasi-2D setting.

Consider the propagation of the impurity, initially in

the state of harmonic oscillator quantum number ni.

Interactions with a particle from the majority Fermi

sea may change the state into a final state with quan-

tum number nf . Conservation of parity further restricts

ni−nf to be even. In the single particle-hole approxima-

tion, the propagator of the impurity then takes the form

of a matrix equation

G(p, �) =
�
G−1

0 (p, �)− Σ(p, �)
�−1

, (7)

obtained by summing the geometric series illustrated in

Fig. 2. Note that the diagrams are formally identical

to those considered in 3D [20], however each propaga-

tor is now assigned a harmonic oscillator quantum num-

ber which is summed over intermediate states. The bare

propagator is given by the diagonal matrix Gnn�

0 (p, �) =
δnn�/ [�− �pn + i0] and the self energy is

Σn1n2(p, �) =
�

q,n

Tn1n
n2n (p+ q, �+ �qn) nF↑(q, n), (8)

where �pn ≡ �p + nωz. The Fermi function nF takes

the value 1 if the state with momentum q and harmonic

oscillator quantum number n is occupied in the ↑ Fermi

Matrix equation:

Σn1n2(p, �) =
�

q,n

Tn1n
n2n (p+ q, �+ �qn) nF↑(q, n)

Pietilä, Pekker, Nishida, 
Demler, PRA 2012



Molecule in quasi-2D

• Variational wavefunction for the molecule:
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FIG. 6: (color online). The integral equation (8) satisfied by the vertex H. Circles indicate that the interaction inside the
vertex is initially between the two marked particles. The loop on the last two diagrams yields a summation over q�.

H. Taking into account only the homogenous terms (any pole in the non-homogenous term lies above the dressed

moleculy energy) finally results in the integral equation (8) in the main text.

Additionally, we have verified that a variational approach with the trial wave functions for the polaron

|P � =
�

n

φnc
†
↓0n |FS, N↑ �+

�

nn�m
kq

φnn�m
kq c

†
↓q−knc

†
↑n�kc↑mq |FS, N↑ � (14)

and the molecule

|M � =
�

nn�k

φnn�

k c
†
↑knc

†
↓−kn� |FS, N↑ − 1 �+ 1

2

�

nn�mm�
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φnn�mm�

kk�q c
†
↓q−k−k�nc

†
↑kn�c

†
↑k�mc↑qm� |FS, N↑ − 1 � (15)

yields the equations (6) for the polaron and (8) for the molecule quoted in the main text. Here c
†
σkn denotes the

creation operator for a particle of spin σ with in-plane momentum k in the n-th transverse harmonic oscillator mode.

|FS, N↑ � is the non-interacting ground-state of N↑ spin-↑ fermions.
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FIG. 3: (color online). Energy �P /�F of an impurity interact-
ing repulsively with a Fermi sea as a function of interaction
strength. The energy of a quasi-2D impurity is shown for
�F /ωz = 0.1 (solid line). Additionally we show the 2D results
of Ref. [16] using the often used assumption a2D =

√
2m�B

(dotted), and also using Eq. (1) as definition of a2D (dashed).

sea, and zero otherwise. The energy of the polaron corre-

sponds to a pole of G(p, �). From Eq. (7) the energies of

both the attractive and the repulsive polaron may then

be obtained.

The energy of the repulsive polaron as a function of

interaction strength is shown in Fig. 3. As opposed

to the attractive polaron, our calculation demonstrates

that the energy of the repulsive polaron depends solely

on the interaction parameter kFa2D. This is to be ex-

pected as |�P | � ωz and thus the energy should match

previous studies of the repulsive polaron in 2D [15, 16].

Furthermore, Fig. 3 demonstrates that in order to com-

pare the predictions of these 2D theories to experiments

with quasi-2D Fermi gases, one should not match the

binding energy of the 2D theory to that of the quasi-2D

system. Instead the 2D scattering length a2D defined in

(1) and calculated by using the low energy quasi-2D scat-

tering amplitude in Eqs. (2)-(5) should be used. Note

that while the energy of the repulsive polaron depends

solely on kFa2D, the decay rate depends sensitively on

the energy difference between the repulsive polaron and

the lower lying states [25] and is thus non-universal.

As the strength of interactions is increased, the im-

purity binds a particle from the Fermi sea to form a

molecule. As in the case of the polaron state, the

molecule is in turn dressed by particle-hole pairs. The

molecule dressed by one particle-hole pair has been stud-

ied in 3D [26–28] and in 2D [14] by variational and dia-

grammatic methods. Here we extend the diagrammatic

method of Combescot et al. [26] to include harmonic con-

finement. To this end, we note that the confinement

does not change the structure of the diagrams needed

for the molecule energy. The difference in the present

−1.0 −0.5 0.0 0.5 1.0
ln(kFa2D)
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0

�/
� F

Quasi-2D

2D
−1.0 −0.5 0.0 0.5 1.0

−0.75

−0.50

−0.25

(�
+
� B
)/
� F

FIG. 4: (color online). Energy of the attractive polaron (solid
line) and molecule (dashed) in the 2D regime and in quasi-2D
(�F /ωz = 1/10). The molecule energy has been shifted by �F
to reflect that a particle has been removed from the Fermi
sea. The inset shows the quasi-2D energies of the main figure
with the binding energy subtracted.

problem is that all fermion propagators are assigned a

harmonic oscillator quantum number and the T -matrix

depends on these. Assuming �F < ωz such that in the

non-interacting Fermi gas only the ground state of the

harmonic oscillator potential is occupied, the energy of

the dressed molecule is obtained when the equation
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 (9)

has a solution. The vertex H includes all diagrams oc-

curring in atom-dimer scattering in a quasi-2D geometry

[29]. The sum on q�
is up to kF while the sum on k�

is

over all possible momenta. We use the notations E
n
k ≡

−�+�k+nωz and E
n
kk�q ≡ −�−�q+�k+��k+�k+k�−q+nωz.

For further details see the Supplementary material.

In Fig. 4 we display the energy of the attractive po-

laron and the molecule in the 2D limit and in quasi-2D.

As may be seen, the polaron and molecule energies cross

at a very small angle and thus the position of the polaron-

molecule transition depends sensitively on the confine-

ment. Computing the position of the polaron-molecule

transition as a function of the strength of confinement,

�F /ωz, yields the phase diagram in Fig. 1. As the con-

finement is weakened from the 2D limit (or the density

increased), the transition is seen to move towards smaller

�B/�F . In particular, in the experiment of Ref. [10] with
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Polaron-molecule transition in quasi-2D

• Transition shifted to lower             for increasing density

• Good agreement with experimental result
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Analogy with narrow Feshbach resonance

• Narrowness associated with large effective range

• Polaron-molecule transition recently studied close to narrow FR

• Large effective range moves transition towards BCS limit, as in 
quasi-2D Massignan arXiv 2011, Trefzger & Castin arXiv 2011

Polarons and dressed molecules near narrow Feshbach resonances
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!!k F a " !1
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E# ΕF

Fig. 4: Quasiparticle energies across the resonance for m↑ =
m↓. Polarons (molecules) are depicted by thick (thin) lines.
Continuous blue lines correspond to kFR∗ = 5, while dashed
pink ones are for kFR

∗ = 0. The polaron/molecule crossings
are marked by dots. The dot-dashed blue line is the analytic
result for the molecule energy with kFR∗ = 5 from eq. (20).
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Fig. 5: Inverse effective mass (main figure) and residue (inset)
of the two polarons for m↑ = m↓. Lines as in fig. 4.
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Fig. 6: Critical interaction strength of the polaron/molecule
crossing as a function of the resonance width for various mass
ratios m↑/m↓. Above (below) the line the ground state is a
molecule (polaron). Inset: energy Ex of the excitations at the
crossing. The dots mark the interaction strength and energy
of the crossing as located in the K-Li mixture of ref. [8].

nance are actually quite general, and reproduced through-
out the BEC-BCS crossover and for a large range of mass
ratios. Our theoretical results for potassium impurities in
a lithium gas with kFR∗ ≈ 1 were presented in ref. [8],
and agreed with remarkable accuracy with experimental
observations. Here we focus on the equal masses case, and
compare in figs. 4-5 the polaron properties for kFR∗ = 5
to known results from the broad case. On the BEC side,
the attractive polaron and the dressed molecule follow the
two-body binding energy Eb, and appear less bound than
in the broad case. On the BCS side, the repulsive in-
teraction experienced by the dressed molecule is reduced,
yielding a dressed molecule increasingly bound deep in the
BCS regime, and a shift of the polaron/molecule crossing
in the same direction. Remarkably, eq. (20) gives a very
good approximation to EM close to resonance even for a
moderately narrow resonance with kFR∗ = 5. The energy-
dependence of the T-matrix is important for narrow reso-
nances, as noted below eq. (10), and yields sensible shifts
of all other quasiparticle properties, such as the polarons’
inverse effective mass and residue shown in fig. 5.
The critical interaction strength (kFax)−1 at which the

polaron and molecule energies are equal is plotted in fig. 6
for various mass ratios. For every interaction strength,
the dressed molecule becomes the ground state of the mix-
ture at sufficiently large kFR∗. For m↑/m↓ = 6/40 and
kFR∗ = 0.95, we find −(kFax)−1 = 0.6 in good agreement
with the value obtained in the imbalanced K-Li mixture of
ref. [8] (dots in fig. 6). The residual small discrepancy may
partially be ascribed to finite experimental resolution, but
especially to non-zero temperature effects: E− and EM

intersect at a very small angle, and a minute shift of the
energy levels can yield a noticeable shift of the crossing.
The inset of fig. (6) shows the energy Ex of the two exci-
tations at the crossing. In the narrow limit kFR∗ # 1, we
find (kF ax)−1 ∼ −(kFR∗)mr/m↑ and Ex ∝ (kFR∗)−1, as
one recovers analytically from the corresponding asymp-
totics E0 ∼ ETh

M (as in this limit E− ! E0 < 0 < ETh
− ).

Tan’s relation for the size of the dressing cloud.
– The energy density of a Fermi sea containing a few
impurities (n↓ & n↑) is given by

ε =
3

5
εFn↑ + E↓n↓, (21)

where E↓ = min[E−, EM ] is the ground state energy of
a single dressed impurity. The self-consistent equation
E− = ΣP(E−) at p = 0 gives the polaron energy, and
a similar one may in principle be written for the dressed
molecule energy in terms of a self-energy ΣM. We restrict
ourselves here to the broad resonance case, where both
self-energies are simply functions of the energy ω and of
the scattering length a. The derivative of eq. (21) with
respect to v = 1/a yields Tan’s contact density C [32, 33]

−
C

8πmr
=

dE↓

dv
= n↓

(

∂Σ

∂v
+

∂Σ

∂ω

∂E↓

∂v

)

= n↓Z
∂Σ

∂v
, (22)

p-5

(Massignan)



2D-3D crossover

•Polaron energy at 3D FR: 

0 1 2 3 4 5
µ↑/h̄ωz
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µ
↑
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2D-3D crossover

3D limit

(�b = 0.244�ωz)

� = −0.607�F
Chevy PRA 2006, Combescot et al PRL 2007

• Series of cusps due to change in density of states

• Quickly saturates close to 3D value



Repulsive polaron

• Energy of repulsive polaron accurately described 
by 2D theory provided                    is calculated 
within the quasi-2D theory
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Note: Energy correctly described, 
however width requires precise 
description of decay channels



Conclusions

• Quantitative description of current quasi-2D experiments 
requires taking confinement into account

• Changes position of polaron-molecule transition
towards smaller binding energy

• Agrees with experiment

• Can study 2D-3D crossover quantitatively

• Cusps in energy, quick convergence towards 3D limit

• Upper branch may be described by 2D theory provided 
correct scattering length is used
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