Momentum-resolved spectroscopy of one-dimensional Bose gases

Nicole Fabbri

European Laboratory for Nonlinear Spectroscopy Istituto Nazionale di Ottica-CNR

Theory of Quantum Gases and Quantum Coherence ENS, Lyon – 6 June2012

BEC 1 (Rb-87)

Chiara Fort Massimo Inguscio Leonardo Fallani (now Yb lab, Firenze) David Clément (now at Laboratoire Charles Fabry) N. F. Sara Rosi Alain Bernard

One-dimensional systems

A potential forces particles to be localized in two directions

and $\hbar\omega_y \ll E_{int}, k_BT \ll \hbar\omega_\perp$

(the system occupies the transverse groundstate, which can be degenerate by including several longitudinal modes)

One-dimensional systems

interactions and large quantum fluctuations + exactly solvable models (Lieb-Liniger...) + powerful numerical methods; time-dependent dynamics, out-ofequilibrium calculations

many realizations of 1D systems do exist in 3D world

1D Superconductors

Vodolazov et al., PRL (2003)

1D physics with cold atoms

Realizations of 1D systems in cold gases:

- (Quasi-) 1D gases in elongated magnetic traps (atom chips) Schmiedmayer @ TU-Wien (Nat. Phys. 2005, PRL 2001, PRA 2009, 2010); Bouchole @ LCF (PRL 2006,2010,2011, PRA 2007,2011); van Druten @ Amsterdam (PRL 2008,2010)...

- Optical lattices to produce array of 1D gases Esslinger @ ETHZ (Nature 2002, PRL 2003); Porto @ NIST (PRL 2004)...

\rightarrow Strongly interacting regime

Bloch (Paredes et al., Nature 2004); Weiss (Kinoshita et al., Science 2004); Nägerl @ Innsbruck (Haller et al., Science 2009)...

Study of the momentum distribution of an array of harmonically trapped 1D Bose gas (Rb atoms)

- inelastic light scattering (Bragg spectroscopy)
- ▷ mapping momentum distribution via density distribution after free evolution

Experiment

Sample preparation, harmonic trap

Bose Einstein condensate of ⁸⁷Rb in the in lowest hf state $|f=1, m_f=-1\rangle$

λ₀=780 nm

 $N_{BEC} \sim 10^5$ $T_C \cong 125 \, nK$ $\mu/h \approx 600 \, Hz$ $R_\perp \cong 4 \, \mu m$ $R_y \cong 40 \, \mu m$

 ω_{\perp} / $2\pi \sim 90$ Hz ωy / $2\pi \sim 9$ Hz

Experiment

from the interference of two pairs of counterpropagating off-resonant laser beams:

 $V_{dip} \propto s_{\perp} E_R \left(\sin^2(kx) + \sin^2(kz) \right)$

Array of 1D gases

Number of 1D gases: $N \approx 1500$ Number of atoms per tube:150 Size 30 μ m × 50 nm Density \approx 7 μ m⁻¹

@
$$s_{\perp} = 40$$

tunneling time $\approx 3s$ $\omega_{\perp} / 2\pi \approx 50 \ kHz$ $\omega_{\parallel} / 2\pi \approx 50 \ Hz$ $\mu_{1D} / h \approx 1 \ kHz$ $k_B T / h \approx 2 \ kHz$ $(T \approx 100 \ nK)$

 $\hbar\omega_y < E_{int}$, $k_BT \ll \hbar\omega_\perp.$

One-dimensional systems

Lieb-Liniger model:

$$\widehat{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial y_i^2} + g_{1D} \sum_{i< j=1}^{N} \delta(y_i - y_j)$$

E.H. Lieb e W. Liniger, PR 130 (4), 1963

many-body problem of bosons in 1D with pairwise interactions

- T=0
- uniform
- contact interactions

$$\gamma = \frac{m \, g_{1D}}{\hbar^2 \, \rho}$$

$$g_{1D} = \frac{2\hbar^2}{ma_{\perp}} \frac{a_s/a_{\perp}}{1 - C(a_s/a_{\perp})}$$
$$a_{\perp} = \sqrt{\hbar/(m\omega_{\perp})}$$

 $\gamma \rightarrow 0$ non-interacting bosons

γ>> 1 gas of impenetrable bosons interactions mimic Pauli exclusion principle: |ψ| akin spinless fermions Tonks Girardeau gas M. Girardeau, J. Math. Phys. (1960)

In 1D interactions dominate in the low density limit!

Phase diagram of 1D Bose gases

 $t = \frac{2\hbar^2 k_B T}{m g_{1D}^2} \quad \gamma = \frac{m g_{1D}}{\hbar^2 \rho}$

Petrov, Shlyapnikov, Walraven, PRL (2000) Bouchoule, Kheruntsyan, Shlyapnikov, PRA (2007) Jacqmin et al. PRL (2011)

Phase diagram of 1D Bose gases

In practice: 1D gas in a trap (tranverse+longitudinal)

Phase diagram of 1D Bose gases

Probe the dynamical properties of the system

Inelastic light scattering

Inelastic scattering of waves or particles has been widely used to gain information on the structure of matter

non-zero momentum transfer

weak perturbation \rightarrow LINEAR RESPONSE

In cold atoms (Bragg scattering): Two-photon transition between two motional states of the same internal ground state

First experiments:

M. Kozuma et al. PRL 82 871 (1999) J. Stenger et al. PRL 82, 4569 (1999)

Weakly interacting 3D BEC Excitation spectrum:

J. Stenger et al., PRL (1999) J. Steinhauer et al., PRL (2002)

Phase fluctuations:

S. Richard et al., PRL (2003)

D. Helweg et al., PRL (2003)

Bragg spectroscopy

two simultaneous off-resonance laser pulses

Bragg spectroscopy

Probe the dynamical structure factor

We choose a fixed $\delta k = q_B$ and we scan $\delta \omega$

We measure the energy transferred to the system

In the linear response theory:

 $\Delta E \propto \omega S_{qB}(\omega)$

Brunello et al. PRA 2001

Bragg spectra of 1D gases

Probe the momentum distribution

Doppler regime: momentum transfer $q_B \gg 1/\xi = \sqrt{\frac{2mgn}{\hbar^2}}$

mean-field picture (Bogoliubov approx) Bragg condition for energy and momentum conservation

$$\hbar\delta\omega = 4E^B_{Rec} + \alpha\mu + \hbar q_B v_{at}$$

Probe the momentum distribution

Doppler regime: momentum transfer $q_B \gg 1/\xi = \sqrt{\frac{2mgn}{\hbar^2}}$

Bragg is sensitive to the initial momentum distribution $S_{qB}(\omega) \propto n(p)$ $\Delta p = \frac{2\pi m}{a_B} \Delta \nu$

Coherence length

Lorentzian shape: width related to the inverse of the coherence length L_{ϕ}

$$L_{\phi} = \frac{\hbar^2 \rho}{m k_B T}$$

For trapped 1D gases Gerbier, PhD thesis (2003)

> In the array, we extract an effective global coherence length

> We study how this varies by increasing the strenght of the transverse confining potential

N. Fabbri et al., PRA 83, 031604(R) (2011)

Coherence length

> We study now this varies by increasing the strenght o the transverse confining potential

N. Fabbri et al., PRA 83, 031604(R) (2011)

Coherence length

$$L_{\phi} = \frac{\hbar^2 \rho}{m k_B T}$$

increasing the transverse confinement:

- anisotropy increases by 10%
- linear density decreases by [] 15%

• **T increases due to axial compression** (harmonic confinement along the tubes due to the radial effects of the optical lattice beams)

Measuring momentum distribution via TOF imaging

When the trap is switched off, the spatial density distribution of the atomic cloud after time-of-flight (TOF) reflects the *in-trap momentum distribution*

The expansion of the gas is governed by two kinds of kinetic energy:

- interactions converts into kinetic energy
- local phase gradients produce a velocity field

$$\mathbf{v}_{\phi} = (\hbar/m) \boldsymbol{\nabla} \phi$$

When strong enough, initial phase fluctuations dominate longitudinal dynamics during TOF

$$\frac{R_{tof}^{\phi}}{R_{tof}^{\phi}} \sim \frac{\hbar t_{tof}}{m \, L_{\phi} \, R_{tof}^{int}} > 1$$

Measuring momentum distribution via TOF imaging

Measuring momentum distribution via TOF imaging

Nicole Fabbri - ENS, Lyon, 6 June 2012

Current plans

Nicole Fabbri - ENS, Lyon, 6 June 2012

Summary

Bragg spectroscopy is a powerful tool to investigate the linear response of the system at nonzero momentum transfer

We measured the momentum distribution of an array of 1D gases: Lorentzian shape, as predicted for a single uniform 1D gas; Measured the coherence length as a function of the transverse confinement.

In systems with short-range phase fluctuations: mapping momentum distribution via density distribution after free evolution reveals the coherence properties of the system

- Strongly interacting systems

- Strongly interacting disordered systems (debate on the role of thermal phase fluctuations in the nature of the superconductor-insulator transition...)

Thank you!