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untreatable on a classical one”

R. P. Feynman, Int. J. Theor. Phys. (1982).
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Gauge theories defined on a discrete lattice structure
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Emergent gauge symmetries: spin models in condensed matter
systems (Kogut, Rev. Mod. Phys. 1979)--> spin liquids, exotic
excitations, confinement/deconfinement criticality,...
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[ ...and lattice gauge theories

Gauge theories defined on a discrete lattice structure

Emergent gauge symmetries: spin models in condensed matter
systems (Kogut, Rev. Mod. Phys. 1979)--> spin liquids, exotic
excitations, confinement/deconfinement criticality,...

Example: Kitaev Model

H=Ji Y SV 1g S 5282 1 ¥ 55

1<4,5> 2<4,5> 3<i,j>

JiJ3
XXXX 2277

vertex plaquette
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Gauge theories defined on a discrete lattice structure
K. Wilson, Phys. Rev. D (1974).
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Gauge theories defined on a discrete lattice structure
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[ ...and lattice gauge theories (ll)

Gauge theories defined on a discrete lattice structure
K. Wilson, Phys. Rev. D (1974).

Fundamental gauge symmetries: standard model (every force has a
gauge boson)

—)

Lattice formulation provides an non-perturbative formulation
of fundamental theories of matter (e.g. QCD)

Notable achievements Notable issues
1)first evidence of quark-gluon Sign problem in its various flavors:
plasma 1)finite density QCD (=fermions)
2)ab initio estimate of protonic mass 2)real time evolution
3)entire hadronic spectrum 3)non-zero theta angle

Main need / goal: design a quantum simulator for
lattice gauge theories and investigate some relevant
phenomenon
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{ Outline of the talk

Poor man view of global versus gauge symmetries and static vs
dynamical gauge fields

General strategy for quantum simulation: quantum link models vs
Wilson LGT

The simplest quantum link model: U(1) symmetries in 1D and QED

Confinement in LGT: string breaking

Implementation of quantum link models with both gauge and matter
fields in optical lattices: Bose-Fermi mixtures

Observability of confinement phenomena

|
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Global symmetries

H=—t Z(CICi+1 + h.c.)
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Global symmetries

H=—t Z(C:L!-Ci_|_1 + h.c.)

Invariant under global transformations

c; — e'Pc; Vi

[H,an] = O
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Global symmetries

H=—t Z(C:L!-Ci_|_1 + h.c.)

Invariant under global transformations

c; — e'Pc; Vi

Global conserved quantity!

Nror = (Z n;)
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Global symmetries Gauge (local) symmetries

H=—t Z(C:L!-Ci_|_1 + h.c.)
Z QED

Invariant under global transformations

c; — e'Pc; Vi

Global conserved quantity!

Nror = (Z n;)
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Global symmetries Gauge (local) symmetries

H=—t Z(CICIL'_|_1 + h.c.)

QED
Invariant under global transformations
c; — e'Pc; Vi
A, Z n;} =0 Local conserved quantity!

Global conserved quantity!

VE =0
Nror = (Z n;) + P
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Global symmetries Gauge (local) symmetries

H=—t Z(c;rciﬂ + h.c.)

QED
Invariant under global transformations
c; — e'Pc; Vi
A, Z n;} =0 Local conserved quantity!

Global conserved quantity!

VE =0
Nror = (Z n;) + P

Gauss law!
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Static gauge fields:
particles hopping around
a plaquette acquire a
finite phase
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Static gauge fields:
particles hopping around
a plaquette acquire a
finite phase

4 3
¢:§£Ads

TN__~»” 2
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Static gauge fields:
particles hopping around
a plaquette acquire a
finite phase

4 3

¢:§£Ads
1 \/ 2
X &~ ~x+1

©- O

e!Pxx1 (phase)

H= _t"’ULei(pX’x-i_lwx_Fl + h.c.

Theory Review: J. Dalibard et al., Rev. Mod. Phys. (2011)
Exp.: Munich, Hamburg, NIST,...
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Static gauge fields: Dynamical gauge fields: particles

particles hopping around hopping around
a plaquette acquire a a plaquette assisted by additional
finite phase link degrees of freedom
4 3

¢:§£Ads

TN__~»” 2

X &~ ~Nx+1
@- O

ei‘Px,x+1 (phase)

H= —tw};ei%x“wxﬂ + h.c.

Theory Review: J. Dalibard et al., Rev. Mod. Phys. (2011)
Exp.: Munich, Hamburg, NIST,...
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Static gauge fields: Dynamical gauge fields: particles

particles hopping around hopping around
a plaquette acquire a a plaquette assisted by additional
finite phase link degrees of freedom
4 3 . Usa 4
¢ = §I§Ads . X
U4,1 U2,3
TN 2 T
Ui,2

X &~ ~Nx+1
@- O

ei‘px,x+1 (phase)

H= —twleiwx’x“wxﬂ + h.c.

Theory Review: J. Dalibard et al., Rev. Mod. Phys. (2011)
Exp.: Munich, Hamburg, NIST,...
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Static gauge fields:
particles hopping around
a plaquette acquire a
finite phase

4 3
¢:§£Ads

TN__~»” 2

X &~ ~x+1
@ O

e!Pxx1 (phase)

H = —twleiwx’x“wxﬂ + h.c.

Theory Review: J. Dalibard et al., Rev. Mod. Phys. (2011)
Exp.: Munich, Hamburg, NIST,...

Dynamical gauge fields: particles
hopping around
a plaquette assisted by additional
link degrees of freedom

U.

A 34 4
U4,1 [72,3
1 2 2
Uiz

Uy x+1 (operator)

H: _tw-;-Ux,x+]_w'x+]_ +h.C.

See Creutz and Montvay/Muenster books + Kogut
(Rev. Mod. Phys. 1979)
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(Not too) Formal definition of a lattice gauge theory
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(Not too) Formal definition of a lattice gauge theory

1)set of fields acting on the vertices (matter fields) and on the links (gauge fields)

/ 'y
O Vo 2.{13?1 Q Uzt
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(Not too) Formal definition of a lattice gauge theory
1)set of fields acting on the vertices (matter fields) and on the links (gauge fields)
/ g
@ V: Q@T=@ Q Uzt
T r+1

2)set of generators which define the gauge symmetry, and the physical Hilbert space:

/"
G5 Uy yi1] = 02y Us 211 G| phys) =0
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(Not too) Formal definition of a lattice gauge theory
1)set of fields acting on the vertices (matter fields) and on the links (gauge fields)
/ ]
@ V: @T=@ Q Usatl
T r+1

2)set of generators which define the gauge symmetry, and the physical Hilbert space:

/"
G5 Uy yi1] = 02y Us 211 G| phys) =0

3)a Gauge invariant Hamiltonian:

H[wil?? UZB,LE—|—1]7 [H) Gg;] =0 \V/CE
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Key issue: embody the physics of gauge fields on a lattice
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Original Wilson formulation: gauge fields span an infinite-dimensional Hilbert space

» Implementation in quantum optical setups very challenging

U(1) Wilson lattice gauge: Kapit and Mueller, Zohar and Reznik (2011).
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Key issue: embody the physics of gauge fields on a lattice

Original Wilson formulation: gauge fields span an infinite-dimensional Hilbert space

» Implementation in quantum optical setups very challenging

U(1) Wilson lattice gauge: Kapit and Mueller, Zohar and Reznik (2011).

Alternative formulation of lattice gauge theories with discrete gauge variables,
which are usually quantum spins: Quantum link models

z

_I_
UCU,CU—l-l — S:U,:r;—l—l ECE,CIJ-l-l — x,x+1

Quantum link models: D. Horn (1981), Chandrasekharan and Wiese (1996). See also Wen'’s book.

Digital approaches: H. Weimer et al.(2010), Tagliacozzo et al.(2012).
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Key issue: embody the physics of gauge fields on a lattice

Original Wilson formulation: gauge fields span an infinite-dimensional Hilbert space

# Spl_n instead of setups very challenging
continuum valued

. bhar and Reznik (2011).
fields

Alternative formulation of lattice gauge theories with discrete gauge variables,
which are usually quantum spins: Quantum link models

z

_I_
UCU,CU—l-l — S:U,:U—l—l ECL‘,CI?-l-l — x,x+1

Quantum link models: D. Horn (1981), Chandrasekharan and Wiese (1996). See also Wen'’s book.

Digital approaches: H. Weimer et al.(2010), Tagliacozzo et al.(2012).
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions
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Fermionic and spin fields acting on vertices/links: (% :f:x,x—|—1
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% x x—|—1

H:—tZ(W S wi1at1 +hoc) +mz 1) %1l ahy + Z P ot1)’
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% x x—|—1

H=— (¥] a:.aw:+1¢ac+1@L Z )™l + Z( §’$+1)2

“Correlated” tunneling
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% x x—|—1

Matter-fields interaction

H = (A v +BEDy m D 4l + G TS5

“Correlated” tunneling

Thursday, June 7, 12



(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% :?,x—l—l

Matter-fields interaction

2
) 2 : 2
TS;_,Q:—I-lwaz—l-l@m ? ( a:,a:—|—1)2

“Correlated” tunneling Staggered chemical potential
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% :?,x—l—l

Matter-fields interaction Mass term

2
) 2 : 2
TS;_,Q:—I-lwaz—l-l@m ? ( a:,a:—|—1)2

“Correlated” tunneling Staggered chemical potential
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% :?,x—l—l

Matter-fields interaction Mass term

2
9
X X

“Correlated” tunneling Staggered chemical potential ~ Single-ion anisotropy
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% :?,x—l—l

Matter-fields interaction Mass term Gauge potential

2
9
X X

“Correlated” tunneling Staggered chemical potential ~ Single-ion anisotropy
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(1+1) d U(1) quantum link model coupled with staggered (=~ spinless) fermions

Fermionic and spin fields acting on vertices/links: (% :?,x—l—l

Matter-fields interaction Mass term Gauge potential

2
)
X T

“Correlated” tunneling Staggered chemical potential ~ Single-ion anisotropy

(—1)* — 1
2

G:U — w;r;wa: — Ea:,:c—|—1 + Ea:—l,a: +
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—1)* -1
Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation

0) © [1) @ - — B>
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—1)* -1
Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation
0001 O e — e

Even sites

0
—Ob
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Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation
0001 O e — e

Even sites

0
—Ob

O
-
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—1)* -1
Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation
0001 O e — e

Even sites

0
O
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—1)* -1
Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation
[~ 1) 0) [+ 1)

000 1) @ et — w
Even sites Odd sites

0 0
— O —o—
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—1)* -1
G, = ¢l¢x - S;,CB-I—l + S;—l,:c + ( ) G$|\P> —

Example: Spin 1 representation
[~ 1) 0) [+ 1)

000 1) @ et — w
Even sites Odd sites

0 0
— O —o—
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—1)* -1
Gy = Plths — Seat1 T 9212 T =D G.|V) =0

Example: Spin 1 representation
[~ 1) 0) [+ 1)

000 1) O e — e
Even sites Odd sites

0 0
— O —o—

S
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' quark ‘ anti-quark o flux String

@—Q
-
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‘ quark ’ anti-quark === flux string

= —tz ¢ x+1¢x+1 +h.c.)+ mz Wwa: T % Z( ;,x+1)2
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‘ quark . anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

X
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‘ quark . anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

X

Unbroken

String O»OWW
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‘ quark . anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

Unbroken
String
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‘ quark . anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

Unbroken
String

Mesons + Q
vacuum * OE.
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‘ quark . anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

Unbroken
String

L—2)m
vacuum * 2
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0 quark ' anti-quark === flux string

H = 1 Y (0187, e b RO LS (i)

X

Unbroken

L
String Ol O-llir O Al O llr QA llr@ £ = % —1) - ;n

L—2)m
Mesons + %O{ E™ = g% — (
vacuum * 2

Critical string length L =924 2m/g°
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Main ingredients
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Main ingredients

H=—t Z(w T a;+1”¢a:+1 + h.c.) + mz lebm + Y Z( §,x+1)2

x
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Main ingredients

Gauss law --> local conserved quantity

H=—t Z(w T a;+1”¢x+1 + h.c.) + mz %T% + Y Z( §,x+1)2

X
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Main ingredients

Gauss law --> local conserved quantity

Quantum link model Hamiltonian:

H=—t Z(w T a;+1”¢x+1 + h.c.) + mz %T% + Y Z( §,x+1)2

X
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Main ingredients

Gauss law --> local conserved quantity

Quantum link model Hamiltonian:

H=—t Zw T x+1”¢x+1 + h.c.) + mz %*wx + Y Z( §,x+1)2

Strategy: use Mott insulator (like) condition to
enforce effective gauge invariant dynamics
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H = _tf(cI@ + h.c.) — tB(bJ{bg + h.c.) + UZRF,jnB,j
J

A A-A
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H = _tf(cI@ + h.c.) — tB(bJ{bg + h.c.) + UZHF,jNB,j
J
U>tp,tp

A A-A
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H = _tf(cI@ + h.c.) — tB(bJ{bg + h.c.) + UZHF,jNB,j
J
U>tp,tp
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H = _tf(cI@ + h.c.) — tB(bJ{bg + h.c.) + UZHF,jnB,j
J

U>tp,tp
Gz _ np,1—NB,;2
. 1,2 —
Schwinger 2
representation:

Sty = biby
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H = _tf(ciq + h.c.) — tB(bIbg + h.c.) + UZRF,jnB,j
J

U>tp,tp
Gz npi1—NpB>2
. 1,2 —
Schwinger 2
representation:

bl by

_I_
51,2

effective exchange Hamiltonian

Hpop = JZ (szﬂ b ot + h.c.)

Thursday, June 7, 12



H = —tf(c—{CQ + h.c.) — tB(bIbg + h.c.) + UZHF,jnB,j

J

U>tp,tp
Gz npi1—NpB>2
. 1,2 —
Schwinger 2
representation:

S, = blby

effective exchange Hamiltonian

Hpop = JZ (szﬂ b ot + h.c.)

Local conserved quantity!

GCB — NF + NB.x
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© population imbalance between left and right well

(@) spin imbalance between left and right well

05T
0.0 | obomeuciulpatonbufatiag. 3 ' bl

0.5

0.5
0.0

05k,

05FT

0.0 |-angboatnocoofans 200058838

05k¢

‘/short = 6E7‘
t/U =125

Vshort = llEr
t/U = 0.26

Vshort = 17Er
t/U = 0.048

— —tf(C—{C2 + h.c.) —tg(blby + h.c.) + UZHF,jnB,j

j
U>tp,tp
Gz npi1—NpB>2
. 1,2 —
» Schwinger 2
representation:
S, = blby

effective exchange Hamiltonian

Hiop=J Y (chﬂs;,mwm + h.c.)

Local conserved quantity!

Gm — NF + NB.x

Experimentally demonstrated (with bosons) (Munich, JQlI)
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—@———0 P Pp-o0——o PP ty =t = U/ZO
O Hg~ol, Ul e +he O
—o<¢<¢o T ph-epPoPp-

Coherent oscillations -->
gauge invariant
processes!

Probability of remaining in the gauge invariant subspace after a
guench: 98% (S=1), 99.88% (S=1/2)
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Now that we know the precursor....
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Bosons (2 internal
states) in state-
dependent superlattice

Thursday, June 7, 12



Now that we know the precursor....

Bosons (2 internal
states) in state-
dependent superlattice

Fermions in
superlattice

Thursday, June 7, 12



Now that we know the precursor....

Bosons (2 internal
states) in state-
dependent superlattice

Fermions in
superlattice

Tunable interactions

Thursday, June 7, 12



Now that we know the precursor....

U, tg
Bosons (2 internal N Fa ¥
states) in state- .-
dependent superlattice F
b2
Fermions in
superlattice

Tunable interactions
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Now that we know the precursor....
U, tg
Bosons (2 internal N lF ¥\

states) in state-
dependent superlattice F
b2
Fermions in
superlattice

Tunable interactions

Site-dependent
Schwinger
bosons!
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Now that we know the precursor....
U, tg
Bosons (2 internal N lF ¥\

states) in state-
dependent superlattice F
b2
Fermions in
superlattice

Tunable interactions

Site-dependent
Schwinger
bosons!

Suppressed
tunneling between
even-odd sites 2

Thursday, June 7, 12



Gauge generators

~ 1
Gm:nf+ni+ni—23—l—§[(—1)x—1].
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Gauge generators

~ 1
Gm:nf+ni+ni—23—l—§[(—1)x—1].

Pictorial gauge invariant subspace: “Super-Mott” states
S=1/2
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Gauge generators

~ 1
Gw:nf—l—ni+ni—25—l—§[(—1)$—1].

Pictorial gauge invariant subspace: “Super-Mott” states
S=1/2
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Gauge generators

~ 1
Gw:nf—l—ni+ni—25—l—§[(—1)$—1].

Pictorial gauge invariant subspace: “Super-Mott” states
S=1/2

Odd sites:
2 atoms

Even sites:
1 atom
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tr=tg=U/20,m =[0.2,0,—0.2]

Ground state

Electric field , , , , | G !
value: micro Xl O 7;;# © ,?e\ —© | _'gauge
(ines) vs 0.3_— Y \% y \ /. \ 1t ,® _g . invariance
gauge invariant a) Of SN N N , O 10
model (symbols) B = b)
03 /N Jif[em=02]
1 2 3 4 5 6 70 01 02
X t /U
Or I I . . Evolution of the
E Ob----""""" TTT ~-~_ o — total electric field
N PN | afteraquench
61 — from
120 N confined to
. , ! : deconfined phase
0 10 20 30 40 [blue-red: S=1/2-1]

IT
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tr=tg=U/20,m =[0.2,0,—0.2]

Ground state

Electric field . . — G «
value: micro xx+l 6T ;(\E‘ ° A ‘ | 99U |
(lines) vs 0.3F y \% AN FANEEE L ° e  [Invariance
gauge invariant a) O_ //.,~ N/ \,}\ ///I \_\\\ i ". O 110
model (symbols) NS NS (R o b)
03 ; \_\)(I. ‘_\)‘./' -\_ B Ef ® m=02 6
: : ¥ ¥y \ B m=-0.2
1 2 3 i 5 6 70 01 0.2
tF/ U _
> Or I I . . Evolution of the
e T T T T T~ total electric field
or---- == ——= 7
1)N0tab|e effeCtS c) _6__ ......................................... ‘:,.‘\‘,_E afterfaroqr;:enCh
of string breaking [ confined to
phenomena -12 o | 1 deconfined phase
(disclaimer: 0 10 20 30 40 [blue-red: S=1/2-1]
for S=1/2, false vacuum 1T
decay...)
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Many-body validation and dynamics

Electric field
value: micro
(lines) vs

gauge invariant
model (symbols)

1)Notable effects
of string breaking
phenomena
(disclaimer:
for S=1/2, false vacuum
decay...)

tp=tg=U/20,m =[0.2,0,—0.2]

xx+1}

0.3

a) of
-0.3

c)

Ground state

G

“‘gauge
/ \ 1 ° g ] invariance”
/_7' X\ /i N N [[® ® 110~
)(/ ! .\\\ /! \,\\\ 7! \.\ \ | , o b)
I-I .\‘ 3‘/,', .\‘ k// ‘\x i |1J—'| gy ’
: L Vi \ - O m=- )
'-Tj TR - B - B - B d . |m .0.2 10
1 2 3 4 5 6 70 0.1 0.2
X t /U
61 | | I . Evolution of the
Ob--=-""""" TTTv~-~_ o — total electric field
N : after a quench
-6F — = from
120 N confined to
. ! : deconfined phase
0) 10 20 30 40 [blue-red: S=1/2-1]
[T

2)Relaxation dynamics in gauge theories (crucial for
understanding heavy-ion collisions) can be captured by atomic

simulators
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Critical quantity for confinement phenomena: electric flux configuration

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of
bosons!

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of
bosons!

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of
bosons!

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of
bosons! o

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of
bosons!
© ©

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of

bosons!
O O @

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of

bosons!
@ (D) (D) @

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of

bosons!
O 4 © © O

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration

v

Quantum link: Spin configuration!

\4

Can be exactly reconstructed from (species selecting) in-situ imaging of

bosons!
O #& © 4@ © O

Thursday, June 7, 12



Critical quantity for confinement phenomena: electric flux configuration
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Quantum link: Spin configuration!
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{ Conclusions and perspectives }

Open questions in lattice gauge theory can be in principle
treated with qguantum simulation

Quantum link models provide a perfect platform for cold gases
iImplementation

General procedure to impose Abelian gauge symmetries (not
only 1D!!) and couple gauge fields to matter

Observability of confinement phenomena with state-of-the-art
techniques
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Thanks to E. Rico, P. Zoller (Innsbruck),
M. Mueller (Madrid), P. Stebler, D. Banerjee
and U.-J. Wiese (Bern)
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Non-Abelian extensions? Far from being trivial in quantum link formulation (8-
body interactions...)
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{ Conclusions and perspectives }

Non-Abelian extensions? Far from being trivial in quantum link formulation (8-
body interactions...)

Simpler atomic/molecular/solid state implementations (not in the talk: QLM
with magnetic atoms/polar molecules!)?

Connection with gauge magnets and spin liquids (in principle accessible within
this toolbox)

Finite-temperature confinement/deconfinement phase transition (Abelian
quark-gluon plasma?)

Thanks to E. Rico, P. Zoller (Innsbruck),
M. Mueller (Madrid), P. Stebler, D. Banerjee
and U.-J. Wiese (Bern)
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