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• Relaxation dynamics of a quantum many-body system:
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↵
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final

redistribution of correlations

• Transport of information in quantum channels

Out-of-equilibrium dynamics
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In the generic case

Is the dynamics even local?
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Lieb–Robinson Bounds

E. H. Lieb and D. W. Robinson,  Comm. Math. Phys. 28, 251 (1972)

• v is the maximum group velocity

• independent of the state of the system

• effective speed of light

"this propagation has many features in common with 
the propagation of waves in continuous matter"

Quantum spins with finite-range interactions:
⌦
[O(x1,0),O(x2, t)]

↵  ↵ exp(�(v t� |x1 � x2|))
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Consequences of Lieb–Robinson bounds

"Non-relativistic theories defined by local Hamiltonians, such as the ones used 
in condensed matter physics, have a dynamics that does not violate locality"

Bruno Nachtergaele

As a consequence, many results known in relativistic quantum field 
theories also hold in condensed matter systems

Two examples:

• Goldstone's theorem
for any continuous symmetry spontaneously broken, there exists a massless particle

W. Wreszinski, Fortschr. Phys. 35, 379 (1987)

• Exponential clustering theorem
the vacuum of massive particles has exponentially decaying spatial correlations

M. Hastings, T. Koma, Commun. Math. Phys. 265, 780 (2006)
B. Nachtergaele, R. Sims, Commun. Math. Phys. 265, 119 (2006)
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Ĥ = �J
X

i
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• The proof for the existence of a Lieb–Robinson bound usually relies on 3 conditions:
finite-range interactions, lattice and finite local Hilbert space

• In the Bose–Hubbard model, the number of particles per site is not bounded
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No strict LR bound has been 
found so far in the BH model



Our apparatus

• optical lattice

• 2D or 1D geometry

• few 100 atoms (bosons)

• in-situ fluorescence imaging
single-site and
single-atom resolution

z

y

x

mirror 1064 nm
window 780 nm

high-resolution
objective

NA = 0.68

lattice beams
1064 nm

4 µm
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Fluorescence imaging in an optical lattice

Access only the parity of 
the initial distribution

-1 +1 +1 -1 -1 +1
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Direct access to spatial correlations

deep in the Mott insulator phase close to the superfluid transition

N-point parity correlations

ŝk = ei⇡n̂kĥsk1 ŝk2 . . . ŝkNi
1 dimension

or
2 dimensions
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How to observe the propagation of correlations?

Quench

Relaxation dynamics
redistribution of correlations

0

time
-1 +1 +1 -1 -1 +1

C(d, t) = ĥskŝk+di � ĥskiĥsk+diconnected two-point parity 
correlation function

experimental signal

Initial state:
deep in the MI phase

1 dimension
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Correlations propagate 
with a well defined velocity
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particlehole

Quasiparticle pairs are emitted and 
propagate correlations across the system

Quasiparticle model:

• introduce two types of slave bosons: holes and particles
• the MI ground state is the vacuum for the slave particles
• the slave particles interact via a hard core potential

fermionize + relax the hard core constraint
low density of 

excitations
U/J > 9

• quadratic Hamiltonian
• Bogoliubov modes ⇒ holons and doublons

Solve the many-body 
dynamics analytically



Quasiparticle model

particlehole

Quasiparticle pairs are emitted and 
propagate correlations across the system

| (t)i ' | 0i+
J

U

X

k

f(k)
h
1� e�i[✏d(k)+✏h(k)]t/~h

ih
d†
k h

†
�k � d

†
�k h

†
k

i
| 0i

Time-evolution of the many-body state  (first order in J/U)



Quasiparticle model

particlehole

Quasiparticle pairs are emitted and 
propagate correlations across the system

| (t)i ' | 0i+
J

U

X

k

f(k)
h
1� e�i[✏d(k)+✏h(k)]t/~h

ih
d†
k h

†
�k � d

†
�k h

†
k

i
| 0i

Time-evolution of the many-body state  (first order in J/U)

initial state



Quasiparticle model

particlehole

Quasiparticle pairs are emitted and 
propagate correlations across the system

| (t)i ' | 0i+
J

U

X

k

f(k)
h
1� e�i[✏d(k)+✏h(k)]t/~h

ih
d†
k h

†
�k � d

†
�k h

†
k

i
| 0i

Time-evolution of the many-body state  (first order in J/U)

initial state entangled pair
particle + hole



Quasiparticle model

particlehole

Quasiparticle pairs are emitted and 
propagate correlations across the system

| (t)i ' | 0i+
J

U

X

k

f(k)
h
1� e�i[✏d(k)+✏h(k)]t/~h

ih
d†
k h

†
�k � d

†
�k h

†
k

i
| 0i

Time-evolution of the many-body state  (first order in J/U)

initial state entangled pair
particle + holepropagating pair

wave packet



Quasiparticle model

particlehole

Quasiparticle pairs are emitted and 
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Group velocity

Due to the band structure, there exists a maximum group velocity

group velocity

π/alat

quasi momentum k
-π/alat 0

quasi-momentum k
0 π/alat-π/alat

energy ϵ(k) 4 Jalat / ħ

2 Jalat / ħparticle

hole d✏/dk

Notes:
• We artificially limit the local Hilbert space to 2 states
• The maximum group velocity increases with the lattice filling

(Bose enhancement of the tunnel coupling)



Beyond the quasiparticle model
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Spreading velocity
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Conclusion

• Relaxation dynamics in the Mott regime driven by the
propagation of entangled particle-hole pairs
We can see them!!

• At finite energy and particle number, there exists a
maximum group velocity for the propagation of the quasiparticles

• Can we speak of a Lieb–Robinson bound?

• The light-cone dynamics is related to the linear increase in time
of the entanglement entropy

• What happens in 2D? (Talk by Ludwig Mathey)

• Is this a generic feature of quantum systems
with finite-range interactions??? 
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Quasiparticle model
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Finite-time effects

v(d) = v1
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